

HAND-HELD REMOTE KEYPAD
FOR IBM PC-AT

PROJECT REPORT

Submitted by

G.RAJAJI

K.RAJESH KANNAN

N.UDAYA KUMAR

T.N.C.VENKATA RANGAN

GUIDE

Mr.C.S.MOHAN RAM, M.E

Lecturer

Department of Electronics and Communication Engineering.

In partial fulfilment of the requirements for the

award of Degree of Bachelor of Engineering

Department of Electronics and Communication Engineering.

SRI VENKATESWARA COLLEGE OF ENGINEERING

PENNALUR, SRIPERUMBUDUR - 602 105.

MARCH 1996

ACKNOWLEDGEMENTS

From the bottom of our heart we express our gratitude and thanks to

Mr. R.Arvind, Freelance Inventor who supported us morally during our

rough times and to Mr. Rajagopal P.Sarathy of Binghamton, U.S.A, who

sent us the components from abroad.

We also thank our Guide, Mr. C.S. Mohan Ram, Lecturer, for his

support time and again.

Our grateful thanks are also felt to Prof. R. Ramachandran, Head

of our Department and the entire teaching and Non-teaching staff of our

department, who have been with us always as a constant source of

inspiration for our success.

CONTENTS

 Synopsis 1

 Design Goals 2

 Infra Red Remote Control Basics 3

 Development Platform 7

 Technical Requirement s 8

 Hardware: Hand-Held Remote Keypad 9

 Inside Out 13

 Software: Hand-Held Remote Keypad 47

 Problems Faced 54

 Applications 55

 Bibliography 56

 Appendix A : IR Sensor Technical Specifications

 Appendix B : Philips Remote Transmitter Specifications

 Appendix C : Photometric Terminologies

 Appendix D : How The 8086 Uses I/O Ports

 Appendix E : Interrupt And 80x86 Family

SYNOPSIS

Computers are now in our living rooms, the familiar sight here is a

remote control used for Audio and Video Systems, and our project idea

stems from here. Even when speech and character recognition are being

researched, the primary interface to Computers still continues to be the

familiar desktop keyboards.

Our project aims at using such a “Remote control” as a keypad for

PC-AT desktops. The project includes research and development of

hardware and the supporting software on MS-DOS platform.

The “Remote KeyPad” is aimed at providing a mobile interface

between the user and the computer/controlled device, in addition to the

conventional desktop keyboard and not a substitute for it.

The “Remote KeyPad” outshines conventional keyboard due to its

ability to be carried around in a confined area and still providing access to

the computer. Its compact and handy design is striking. It is mandatory for

a layman who sees Computers in a different perspective from that of the

developers. It may be a boon to make him work efficiently and conveniently,

as he is already familiar with the remote.

DESIGN GOALS

 The KeyPad in its initial form should use an existing Remote

Control transmitter (used in TV/VCR/CATV), this is due to the

time constraints and the cost involved,

 It should be relatively simple to implement and duplicate if needed

in mass numbers,

 It should not implement its own dedicated interface, which

complicates installation and usage,

 It should use a standard interface to the computer (PC-AT) like the

Serial/Parallel ports available in the PC . This also facilitates a

wider ranges of compatibility and also cost-effective,

 Since PC-AT is a very sensitive hardware orchestra, any hardware

which we connect to it, should be designed carefully to meet the

standards of PC,

 The software and the product should be very easy to be used by

layman also,

 The “KeyPad” should work with already developed applications,

that is it should be backward compatible,

 The applications must be totally unaware of “KeyPad”, they should

see the output of “KeyPad” as normal desktop keyboard scan

codes,

 The KeyPad may provide a specialised interface to applications

which are “KeyPad” aware, eliminating the BIOS/OS layer for

greater and speedier functionality,

 The “KeyPad” key mapping may be allowed to be

changed/configured by the user.

 The software must work in DOS platform and may be extended to

MS-WindowsTM.

INFRA-RED REMOTE-CONTROL BASICS

Any remote control system basically consists of a transmitter and a

receiver. An Infra-red system can be easily be designed to give very effective

single- or multichannel remote-control operation: Here, the hand-held

control unit transmits a coded waveform via a broad infra-red beam, and

this signal is detected and decoded in the remotely-placed receiver and

hence used to activate external devices, etc., via the receiver outputs.

The transmitter can remote-control a receiver that is placed

anywhere within the active area of the IR beam, and that the effective

operation must be in line-of-sight contact; also note that an object placed

within the beam can create a blind area in which line-of-sight contact

cannot exist.

CODE PATTERNS

Most modern IR remote-control systems give multi-channel

operation, with each channel giving digital control of an individual function.

The transmitter waveforms usually take a predetermined form, for

example, a burst of six bits of a standard digital format. Generally, it

consists of a frame of fixed time period with a synchronisation bit. In most

of the implementations, the designers have felt it rudimentary to implement

a stop bit.

BLOCK DIAGRAM

The following diagram shows the typical block diagram of a

multichannel IR remote control transmitter. This unit is usually fitted with

a multifunction keyboard, which has its X and Y outputs repeatedly scanned

via an encoder circuit, that controls the input to a code waveform generator

system. This latter unit, generates the carrier wave signal and a fixed

number of bits plus sync pulse (repeating frame waveforms), which are then

passed on to a standard infra-red transmitter output stage .

Fig. 1. Block Diagram of a typical Remote Control Transmitter

In the receiver circuit, the detected IR signal is first fed to a fairly

sophisticated pre-amplifier stage which provides very high gain for long

range operation but does not saturate if the transmitter is used near the

receiver.

The pre-amplifier output is fed to an LSI decoder IC, which typically

directly provides three or four digital outputs (simple on/off functions) and

two or three analogue outputs, but also provides a fixed number of bits as

output, that is a parallel-coded version of the original serial code and can

optionally be decoded via additional ICs to give more functions.

PRACTICAL SYSTEMS

Simple single-channel IR remote-control systems can easily be built

using discrete components such as bipolar transistors. Multichannel system

with up to six digital channels are only slightly more complicated, and can

be built with the aid of simple CMOS ICs such as the 4017B, etc.

In early 80s, if more than six channels are required, it is best to use

dedicated LSI remote control ICs for the purpose. Several manufacturers

produces dedicated ICs of this type, the best known of these being the

490/922 thirty-two-channel range of devices from Plessey, and the IR60

sixty-channel range of devices from Siemens,

Recently, Sharp and Siemens have introduced high efficiency, low

cost, high gain sensors like SFH505A, SFH506-36, IS1U60. Philips

Semiconductors are ahead with their transmitter and receiver IC ranges in

this field with the ICs like SAA3010, TDA3048 and SAA3049.

PHILIPS AND SONY RC-5 CODING SYSTEM:

 This is one of the most famous coding techniques used in modern day

remote control systems. The pioneers for this coding are Philips and Sony

who use it extensively in their range of products. The main advantages of

this system are :

1. stable and well defined coding system.

2. supports a large number of commands (2048 commands).

3. commands are arranged in easily addressable groups.

4. system is immune to sunlight, incandescent lamps and fluorescent

lamps.

5. avoiding of collisions between multiple installations.

6. individual identification for each type of transmitter.

7. the 36-kHz carrier frequency used is immune from TV line scan

interference.

8. acceptable distance of operation.

SANYO CODING SYSTEM:

 Even though this is a proprietary coding system, it is used

extensively in many Sanyo appliances. In this technique, several

advantages are inherited, from RC-5 coding system, but the complexities

are reduced.

The command consists of 16 bits of data sent at a frequency of

1000Hz, with a duty cycle of 50% to represent 20-odd keys. In its present

format, the code does not support multichannel operation. Advanced

versions of this code are implemented in latest systems.

DEVELOPMENT PLATFORM

Study Equipment

 Scientific Storage Oscilloscope 60Mhz

Machine

 486DX-2, 66Mhz,

 12MB RAM,

 MS-DOS6.22

 MS-WindowsTM for Workgroups 3.11

 HP-Deskjet 520

Tools

 Turbo C 2.0 for MS-DOS 

 MS-Visual C++ 1.5

 MASM 6.0 for MS-DOS

TECHNICAL REQUIREMENTS (for target platform)

MINIMAL REQUIREMENTS

 IBM PC-AT or Compatibles and IBM PS/2

 CGA or Better equipped video adapter

 Monochrome Monitor

 8250-UART

 RS-232C interface with DB-9 connector

 MS-DOS3.3

 101-Keyboard

RECOMMENDED REQUIREMENTS

 PC-AT with 386 or better processor

 VGA, 640x480, 16 Colors, Video adapter

 16550A-UART with 16 byte buffer

 MS-DOS5.0 or better

 MS-Natural KeyboardTM

 Enhanced Parallel Port for controlling external devices.

 ISA 8/16 bit slot (for internal version only).

HARDWARE: HAND-HELD REMOTE KEYPAD

 Our system uses Sanyo Coding System. The choice between RC-5 and

Sanyo Coding system was not based on any technical superiority of the

latter but due to simplicity involved and the availability of components.

 The transmitter we have employed is an Universal Remote Control

Transmitter. It supports Sanyo Coding System along with several other

coding systems. The advantages of this transmitter:

 Easy availability.

 Economical for small requirements

 Compact design.

 Availability of more number of keys.

 Robust design.

 Extended Battery life.

Transmitters like the newly introduced Philips OEM Remote-Control

Units can also be used with due modifications in the receiver software. See

Appendix for details on this System.

The receiver unit we have implemented consists of an Infrared

Sensor (IS1U60). This has a built in pre-amplifier and a demodulator. This

is a high gain, low noise receiver and is capable of detecting signals without

appreciable directional properties.

 The sensor is stable in its operation, primarily due to its robust

design. Our experience with this IC stands a proof to this claim by the

manufacturer. (The IC was even kind enough to forgive our mischief with

it in handling and testing.) The technical specifications can be referred from

the Appendix.

© Sharp, RS Components and Controls

The detected signal from the sensor is fed to a voltage comparator

(LM324), which produces an output at TTL levels. The comparator’s high

input impedance offers or draws very little current so that the sensor is not

loaded beyond its capabilities.

The output of the comparator is capable of meeting to high current

requirements. Since we are interested in detecting this signal by the PCAT

through the available RS-232C interface, we convert the output of the

comparator. The conversion is effected due to the two different operating

voltage levels. A TTL to EIA converter device (1488) is employed for this

purpose.

The EIA output is fed into the IBM PC AT compatibles through a RS

232C DB-9 female connector. For our purpose, we employed the Transmit

and GND pins of this interface.

The serial port reads this received signal at twice its rated frequency

of 1000Hz. This is processed by the accompanied software.

An alternative approach to the above hardware design developed by

us is by the use of dedicated decoders already available with OEMs. This

approach has the advantage of parallel outputs of the serial input. This can

then be read through any parallel interface with the computer (like the

Centronics Port in PC).

INSIDE OUT

The design of hardware was the first stage in the development of

“KeyPad”. Before we could design the software for the “KeyPad”, we had to

thoroughly understand PC’s Asynchronous Communication adapter, Serial

Port and interrupt handling. It also becomes important to look into the

keyboard handling in PC, Direct Video mapping techniques and MS-DOS’s

TSR programming concepts and Interrupt Service Routines.

The topics discussed are as follows:

 IBM Asynchronous Communications Adapter

 Serial Port

 8250 I/0 Port

 Keyboard Operation

 Interrupt Handlers

 Memory Mapped Display Techniques

 Using The System Timer Tick

IBM ASYNCHRONOUS COMMUNICATIONS
ADAPTER

The adapter is fully programmable and supports asynchronous

communications only. It will add and remove start bits, stop bits, and parity

bits, a programmable baud rate generator allows operations from 50 baud

to 9600 baud. Five, six, seven or eight bit characters with 1,1-1/2, or 2 stop

bits are supported. A fully prioritised interrupt system controls transmit,

receive, error, line status, and data set interrupts.

The heart of the adapter is a INS8250 LSI chip or functional

equivalent. features in addition to those listed above are:

1. Full double buffering eliminates need for precise synchronisation .

2. Independent receiver clock input.

3. Modem control functions:

3.1. clear to send (CTS),

3.2. request to send (RTS),

3.3. data set ready (DSR),

3.4. data terminal ready (DTR),

3.5. ring indicator (RI) and

3.6. carrier detect.

BLOCK DIAGRAM OF THE ADAPTER

MODES OF OPERATION:

The different modes of operations are selected by programming the

8250 asynchronous communications element. This is done by selecting the

I/O address (hex 3F8 to 3FF primary, and hex 2F8 to 2FF secondary) and

writing data out to the card. Address bits A0, A1, and A2 select the different

registers that define the modes of operation. Also ,the divisor latch access

bit (bit 7) of the line control register is used to select certain registers.

INTERRUPTS:

One interrupt line is provided to the system. This interrupt is IRQ4

for a primary adapter or IRQ3 for an alternate adapter, and is positive

active to allow the communications card to send interrupts to the system,

bit 3 of the modem control register must be set to 1(high). At this point, any

interrupts allowed by the interrupts enable register will cause an interrupt.

The data format is as follows:

Data bit 0 is the first bit to be transmitted or received. The adapter

automatically inserts the start bit, the correct parity bit if programmed to

do so, and the stop bit (1,1-1/2,or,2 depending on the command in the line-

control register).

INTERFACE DESCRIPTION

The communications adapter provides an EIA RS-232C-like

interface. Once 25-pin D-shell, male type connector is provided to attach

various peripheral devices. The voltage interface is a serial interface. It

supports certain data control signals, as listed below.

Pin 2 Transmitted Data

Pin 3 Received Data

Pin 4 Request to Send

Pin 5 Clear to Send

Pin 6 Data Set Ready

Pin 7 Signal Ground

Pin 8 Carrier Detect

Pin 20 Data Terminal Ready

Pin 22 Ring Indicator

These signals are sampled or generated by the communications

control chip. These signals can then be sensed by the software to determine

the state of the interface or peripheral device.

VOLTAGE INTERCHANGE INFORMATION:

Interchange
Voltage

Binary State Signal condition Interface
Condition

Positive Voltage =

Negative Voltage =
Binary (0)

Binary (1)
 = Spacing

 = Marking

= On

= Off

The signal will be considered in the “marking” condition when the

voltage on the interchange circuit, measured at the interface point, is more

negative than -3Vdc with respect to signal ground. The signal will be

considered in the “spacing” condition when the when the voltage is more

positive than +3Vdc with respect to signal ground. The region between

+3Vdc and -3Vdc is defined as the transition region, and considered an

invalid level. The voltage that is more negative than -15Vdc or more positive

than +15Vdc will also be considered an invalid level.

During the transmission of data, the “marking” condition will be used

to denote the binary state “1” and, “spacing “ condition will be used to denote

the binary state “0”.

For interface control circuits, the function is “on” when the voltage is

more positive than +3Vdc with respect to signal ground and is “off” when

the voltage is more negative than -3Vdc with respect to signal ground.

There is an alternative Asynchronous Adapter Connector called 9-pin

RS-232C connector (connector male 9-bin D subminiature: cable requires

female)

Pin Number Signal Direction Description

 1  DCD (Data Carrier Detect)

 2  RX (Receive Data)

 3  TX (Transmit Data)

 4  DTR (Data Terminal Ready)

 5 GND (Signal Ground)

 6  DSR (Data Set Ready)

 7  RTS (Request To Send)

 8  CTS (Clear To Send)

 9  RI (Ring Indicator)

THE SERIAL PORT

The serial port is one of the most versatile interfaces in the PC. It can

be connected to terminals, printers, plotters, mice, modems, other

computers, and even certain disk drives. In most IBM PC compatibles, the

serial interface is controlled by an 8250 or equivalent chip. The CPU

communicates with this chip via eight I/O ports.

BIOS software interrupt 14h provides routines that control the serial

port. MS-DOS uses these routines to implement the COM1 and COM2

devices. These routines check the line status register to see if a character

has been received or if it is OK to send a character. This works final at low

speeds required by printers, but for high speed data communications if often

loses data.

You can use interrupts to make sure that you do not lose any data.

The first step is to set up the serial port to generate an interrupt when it

receives a character. The Interrupt Service Routine needs to read the

character from the serial port and save it in a buffer. This means that the

main routine does not need to spend time checking for data at the serial

port. It can do whatever processing is required, and get data from the buffer

whenever it is ready.

 MS-DOS support for serial ports is weak compared with its keyboard,

video-display and printer support. This is one area where the application

programmed is justified in making programs hardware dependent to

extract adequate performance.

 Programs that restrict themselves to MS-DOS functions to ensure

portability can use the handle read and write functions, with the predefined

standard auxiliary handle (3) to access the serial port. For example, the

following code writes the string 'hello' to the serial port that is currently

defined as the Auxiliary device:

msg db 'hello' ; message for serial port

msglen equ $-msg ; length of message

...

...

 mov ah,40h ; function 40h - write file or device

 mov bx, 3 ; BX - standard aux handle

 mov cx, msglen ; CX - string length

 mov dx, seg msg ; DS:DX - string address

 mov ds, dx

 mov dx, offset msg

 int 21h ; transfer to MS-DOS

 jc error ; jump if error

 The standard auxiliary handle gives access to only the first serial port

(COM1). If you want to read or write COM3 using the handle calls, you

must issue an open request for the desired serial prot and use the handle

returned by that function with Int 21H Functions 3FH and 40H.

Some versions of MS-DOS have a bug in character-device handling

that manifests itself as follows: If you issue a read request with Int 21H

Function 3fH for the exact number of characters that are waiting in the

drivers buffer, the length returned in the AX register is the number of

characters transferred minus one. You can circumvent this problem by

always requesting more characters than you expect to receive or by placing

the device handle into binary mode using Int 21H Function 44H.

MS-DOS translates the traditional auxiliary-device functions into

calls on the same device driver used by the handle calls. Therefore, it is

generally preferable to use the handle functions in the first place, because

they allow very long strings to be read or written in one operation, they give

access to serial ports other than COM1, and they are symmetrical with the

handle video-display, keyboard, printer, and file I/O methods described

elsewhere in this book.

 Although the handle or traditional serial-port functions allow you to

write programs that are portable to any machine running MS-DOS, they

have a number of disadvantages, which are,

1. The built-in MS-DOS serial-port driver is slow and is not

interrupt driven.

2. MS-DOS serial-port I/O is not buffered.

3. Determining the status of the auxiliary device requires a separate

call to the IOCTL function if you request input and no characters

are ready, your program will simply hang.

4. MS-DOS offers no standardised function to configure the serial

port from within a program

 A more flexible technique for serial-port I/O is to call the IBM ROM

BIOS serial-port driver by means of Int 14H. You can use this driver to

initialise the serial port to a desired configuration, and baud rate, examine

the status of the controller, and read or write characters.

 As with the ROM BIOS printer driver, the serial-port numbers used

by the ROM BIOS are zero-based, whereas the serial-port numbers in MS-

DOS logical-device names are one based. In this example, serial port 0

corresponds to COM 1.

 Unfortunately, like the MS-DOS auxiliary-device driver, the ROM

BIOS serial-port driver is not interrupt driven. Although it will support

higher transfer speeds than the MS-DOS functions, at rates greater than

2400 baud it may still lose characters. Consequently, most programmers

writing high-performance applications that use a serial port (such as

telecommunication programs) take complete control of the serial-port

controller and provide their own interrupt driver. The built-in functions

provided by MS-DOS, and by the ROM BIOS in the case of the IBM PC, are

simply not adequate.

8250 I/O PORTS

Due to the limited support of serial ports in DOS and several other

restrictions in using serial ports through ROM BIOS routines we have

resorted to direct access techniques described in detail below.

INITIALISING THE SERIAL PORT

There are two steps to initialising the Serial Port for Data

Communications with interrupts. First, you must tell the 8250 about the

kind of data that it should use, and then set up the Interrupt Service

Routine.

Receiver Buffer Register (DLAB=0)

Transmitter Holding Register (DLAB=0)

Divisor Low Byte (DLAB=1)

Bit 7-0 : Data

Interrupt Enable (DLAB=0)

Divisor High Byte (DLAB=1)

Bits 7-4 : Reserved

Bit 3 : Modem Status

Bit 2 : Receiving Data

Bit 1 : Transmit Ready

Bit 0 : Data Available

INTERRUPT ID REGISTER

Bits 7-3 : Reserved

Bit 2-1 : Interrupt Type

Bit 0 : No Interrupt

COM1: 3F8h

COM2: 2F8h

COM1: 3F9h

COM2: 2F9h

COM1: 3FAh

COM2: 2FAh

LINE CONTROL REGISTER

Bits 7 : DLAB

Bit 6 : Send Break

Bit 5 : Stick Parity

Bit 4 : Even Parity

Bit 3 : Parity Enable

Bit 2 : Stop Bits

Bit 1-0 : Character Size

MODEM CONTROL REGISTER

Bits 7-5 : Reserved

Bit 4 : Lop Back

Bit 3 : OUT2

Bit 2 : OUT1

Bit 1 : RTS

Bit 0 : DTR

LINE STATUS REGISTER

Bits 7 : Reserved

Bit 6 : Character Sent

Bit 5 : Transmitter

Bit 4 : Break Detect

Bit 3 : Framing Error

Bit 2 : Parity Error

Bit 1 : Overrun Error

COM1: 3FBh

COM2: 2FBh

COM1: 3FCh

COM2: 2FCh

COM1: 3FDh

COM2: 2FDh

Bit 0 : Data Ready

MODEM STATUS REGISTER

Bits 7 : Carrier Detect

Bit 6 : Ring Indicator

Bit 5 : Data Set Ready

Bit 4 : Clear to Send

Bit 3 : Delta CD

Bit 2 : Ring Indicator

Bit 1 : Delta DSR

Bit 0 : Delta CTS

First, we should set the Data parameters, i.e., the Number of Start,

Stop, Parity and Data bits. Setting the divisor changes the frequency of the

Clock signal. The clock signal marks the beginning and the end of each bit.

The number of times the clock goes up or down in a second is the baud rate.

The baud rate of the serial port must match the baud rate of the data it

receives from the CPU.

The Line Control Register in the 8250 describes that the data that

will be sent or received. Each part of the data signal is controlled by the

Line Control Register. The data portion can be from five to eight bits long.

Most data transfer programs use eight bits because this matches the size of

a byte. Some text-only devices, like printers, use seven bits to match the

size of an ASCII character.

After the data portion there may be a parity bit. The parity bit can be

used to tell if the data portion is correct. Different devices, use the parity

bit in different ways. Some devices do not use it at all (no parity), others

COM1: 3FEh

COM2: 2FEh

always set the parity bit (mark parity), and still others clear the parity bit

(space parity). If the number of one-bits in the data (including the parity

bit) is even, then the data has even parity. If the number is odd, then the

data has odd parity. When the parity that the receiver (any device with a

serial interface) expects is as different from the data received, then the

receiver knows that the data is bad and should not be used.

The last part of a serial data byte is one or more stop bits. More serial

devices use a single stop bit to mark the end of the data. Some older devices

may use a single stop bit to mark the end of the data. Some older devices

may use two stop bits or 1.5 stop bits. After the stop bit, the signal drops to

the low voltage and stays there until the next data byte is sent.

The second half of the initialisation process is to set up the ISR and

turn on serial interrupts. The first step is to make the entry for the serial

port in the interrupt vector table point to the ISR. This must be done before

any serial interrupts are possible, so that the processor will have some place

to go when the interrupt occurs.

Next, you must tell the serial port to generate an interrupt when it

receives data. To do this you must set the modem control register to enable

the interrupt signal (OUT 2). Then tell the interrupt-enable register what

situations should generate an interrupt. IN this case the 8250 will generate

an interrupt when it has received a byte. The other three conditions are:

ready to send a byte, data error detected, and modem status lines changed.

Finally, the 8259 must be told to allow interrupts from the serial port

by clearing the bit for the serial interrupt in the interrupt mask register.

Now the interrupts are all set up so you can set the interrupts-enabled bit

with an STI instruction. Every time the serial port receives a character, it

will call the ISR.

THE SERIAL FRAME

The Serial Frame consists of a combination of the start, data, parity,

and stop bits. One frame at a time is sent or received on the serial link. For

transmission, the UART adds the start bit, optional parity bit and stop bit

to the data to be sent. On data reception, the UART checks the frame for

various error conditions, and extracts the data from the frame.

The frame size depends on the various control options selected within

the UART by software. The data portion can be from 5 to 8 bits long, a parity

bit can be optionally included and from 1 to 2 stop bits can be selected. This

means the total frame can range from 7 bits up to 12 bits long. The following

figure shows a typical serial frame. The values shown are those measured

at the UART chip, which are inverted from the serial port connector. The

idle state is 1 at the UART when no frames are being sent.

Even=0 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Odd=1
start <----------------------------data byte------------------------------>parity stop

SEQUENCE OF EVENTS-SERIAL RECEIVE

To receive a byte from the serial link, the port is assumed to be

initialised with the proper baud rate and serial frame options. We will also

assume that the byte comes from the serial port 3.

1. First the serial I/O port base address is determined by reading a word

from the BIOS data area at 40:4h from serial port 3. If the value is zero,

there is no active serial port attached, and no data can be received.

2. The modem control line Data Terminal Ready is set high. This informs

the attached device that the computer is active and ready for

communications. This is done by writing the value 1 to the Modem

Control Port.

3. Next check Data Set Ready. This appears in the modem status register,

bit 5. Data Set Ready indicates the attached device is powered up and

ready. Data Set Ready should be checked until it becomes high, or up to

2ms before a time-out is signalled.

4. The receive buffer is next checked to see if data has been received. The

Line Status Register, bit 0, holds a data ready flag. It is set to one when

the receive buffer has data. If the data ready flag fails to get set after

2ms, then a time-out is signalled, and the operation aborted.

5. If no time-outs have occurred so far, the byte can be read from the UART’s

receive buffer.

BAUD RATES

The baud rate is the number of bits per second transferred over the

serial link. To convert this to a number of bytes transferred per second, the

baud rate is divided by the number of bits in the serial frame. One of the

most common frames used include 8 bits of data, no parity bit, and one stop

bit. Including the start bit, this adds up to 10bits. This means 9600 baud

can send 960 bytes per second. To put this in more meaningful terms, it will

take over 2 seconds to fill a standard 2000 character text screen at 9600

baud.

The UART has a built-in baud rate generator. The baud rate is set to

match an attached device. Baud rates divisors are based on the crystal

frequency. This crystal is chosen to ensure that a programmed divisor value

will result in the same baud rate on any system. To determine a baud rate

divisor for any baud rate, divide 115200 by the desired baud rate.

For system-to-system transfers, the baud rates can be set to very high

rates, usually limited only by the CPU speed of the slower of the two

systems. Fox a maximum rate, 115200 baud, the CPU must be able to read

and store a byte every 87 microseconds.

INTERRUPT CONTROL

The serial port can be configured to operate on an interrupt

(rather than polled) basis. A serial port interrupt service handler gets

control whenever errors occur, when a new byte has been received, when

the UART is ready to transmit a new byte, or when the modem control line

status changes. These four types of interrupt action can be selectively

enabled and disabled by writing to the Interrupt Enable Register.

When any of the four types of interrupts occur, the adapter card

triggers an interrupt request, typically IRQ 3 OR 4. The software interrupt

handler is called, typically interrupts 0Bh or 0Ch for IRQS 3 or 4. The

interrupt handler must be supplied by the application using that serial port

with interrupt control. The BIOS does not provide any interrupt

handling services for the serial ports.

Once an interrupt occurs, the handler must read the serial port’s

Interrupt Identification Register to see the specific cause of the interrupt.

When multiple interrupts occur before reading the Interrupt Identification

Register, the highest priority function will be presented first.

Note that within each transmitter frame ,all six channels may be varied

simultaneously.

Original designs used a National Semiconductor 8250 chip. Later

designs switched to a CMOS version, the 16450, that is functionally

identical to the 8250. Some newer designs use a 16550 or other variant.

These newer designs offer the same features as the 16450, but add

additional buffering to reduce CPU overhead.

FIFO MODE

The 16550 series of UARTs operate like the common 8250/16540

UART, but provides an optional “FIFO mode”. Most systems do not use the

16550 and cannot benefit from the FIFO mode of operation.

A few other systems use another alternative UART, the 82510. This

Intel chip also provides 8250 compatibility and FIFO options. It is not as

common as the 16550, but does show up in some systems. The BIOS

interrupts service routines will not activate FIFO mode if available. The

slow BIOS routines are avoided if high performance is required.

With FIFO mode active, the UART will buffer up to sixteen bytes of

receive data, and up to sixteen bytes of transmit data within the UART.

This extra buffering allows the CPU additional time to process higher

priority interrupts and other functions. Without the buffering, the data

received must be read before the next byte arrives. If the CPU remains busy

for an extended period of time while handling a higher priority task, and

two or more bytes are received during this time, an overrun occurs. The

overrun error indicates bytes were lost since the CPU did not read the data

from the UART while additional bytes arrived.

Once it is determined FIFO mode is available, an alternate set of read

and write routines could be substituted for the non-FIFO mode transmit

and receive routines. These replacement routines can transfer multiple

bytes of data at one time with the UART.

Like normal mode UART operation, the FIFO mode can be configured

for interrupt or polled operation. In FIFO mode polled operation, the receive

and transmit routines check the Line Status Register in the same way as

the non-FIFO mode polled operation. The Line Status Register bit 0 is set

when one or more bytes are in the receive FIFO. Bit 5 indicates when one

or more bytes are in the transmit FIFO. Both FIFOs are used transparently

by software. This allows activation of FIFO mode while still using the BIOS

serial port handler.

For FIFO interrupt operation, a trigger level is set in the FIFO

Control Register. The trigger level is the number of bytes needed in the

receive FIFO before a received data available interrupt is generated. The

UART can be programmed to interrupt the CPU when the receive FIFO has

1, 4, 8 or 14 bytes. To keep the interrupt rate low, a higher trigger level is

used. A lower trigger level is used if the CPU does not respond quickly to

the interrupt. Slow CPU response can occur if higher priority interrupts are

allowed or if the system is slow due to CPU clock speed or CPU choice.

In FIFO interrupt mode, the UART will also issue a receive timeout

interrupt if all the three of the following conditions occur:

 The receive FIFO has one or more bytes.

 A byte has not been received over the link for the timeout period.

 The CPU has not read any bytes from the CPU in the timeout

period.

The timeout period is the amount of time equivalent to receiving 4

frames in a row when no action occurs. This means the timeout is directly

proportional to the baud rate. With a 10-bit frame at 9600 baud, the timeout

period would be 4.2ms. For other frames and baud rates the timeout period

is calculated as:

TimeOutPeriod
Bit frame

BaudRate
frames ms

sin
* *4 1000

The timeout duration counter is reset when a new byte is received or

when the CPU reads a byte from the receive FIFO. If a timeout interrupt

does not occur, it is reset when the CPU reads a byte from the receive FIFO.

In interrupt mode, the transmit FIFO will generate an interrupt when the

FIFO becomes empty. The interrupt service routine can then transfer upto

16 bytes into the transmit FIFO. In interrupt mode, the transmit FIFO will

generate an interrupt when the FIFO becomes empty. The interrupt service

routine can then transfer up to 16 bytes into the transmit FIFO.

KEYBOARD OPERATION

 The Keyboard unit contains a dedicated microprocessor that

performs a variety off jobs, all of which help cut down on system overhead.

The main duty of the keyboard microprocessor is to watch the keys and

report to the main computer whenever a key is pressed or released. If any

key is pressed continuously , the keyboard microprocessor sends out a

repeat action at specific intervals.

The keyboard controller has limited diagnostic and error-checking

capabilities and has buffer that can store key actions in the rare instances

that the main computer is temporarily unable to accept them.

IBM KEYBOARD

 The keyboard uses a capacitive technology with a microcomputer

(Intel 8048) performing the keyboard scan function.

The keyboard interface is defined so that system software has

maximum flexibility in defining certain keyboard operations. This is

accomplished by having the keyboard return scan codes rather than ASCII

codes. In addition, all keys are typematic and generate both a make and a

break scan code. Break codes are formed by adding hex 80 to make codes.

The keyboard I/O driver can define keyboard keys as shift keys or

typematic, as required by the application.

The microcomputer (Intel 8048) in the keyboard performs several

functions, including a power-on self test when requested by the system unit.

This test checks the microcomputer ROM, tests memory, and checks for

stuck keys. Additional functions are: keyboard scanning, buffering of up to

20 key scan codes, maintaining bi-directional serial communications with

system unit, and executing the hand-shake protocol required by each scan-

code transfer.

After the processing of codes from remote control and identification

of the key pressed, the key has stuffed into BIOS buffer as proper key scan

codes. For this we need to have clear understanding on the underlying

desktop keyboard.

The keyboard unit contains a dedicated microprocessor that performs

a variety of jobs, all of which help cut down on system overhead. The main

duty of the keyboard microprocessor is to detect the keys and report to the

main computer whenever a key is pressed or released.. If any key is pressed

continuously, the keyboard microprocessor sends out a repeat action at

specific intervals. The keyboard microprocessor controller also has limited

diagnostic and error-checking capabilities and has a buffer that can store

key actions in the rare instance that the main computer is temporarily

unable to accept them.

The PC/AT and PS/2s have sophisticated keyboard control circuitry

that can perform several functions. These features include programmable

typematic control, programmable scancode sets ,and improved hardware for

error detection.

KEYSTROKES AND SCAN CODES

Each time when the keys on the keyboard, the keyboard circuits

transmit a sequence of one or more 8-bit numbers through the connector

cable to the computer. This sequence, called a scan code, uniquely identifies

the key that has been pressed. The keyboard produces different scan codes,

depending on whether the key was pressed or released. The keyboard

control in PC/AT can also assign any of three different sets of scancode

values to the keys on the 101/102 key layouts.

The 101/102-key keyboard also assigns special scan codes to certain

keystroke combinations. The Alt-Sys-Req key is intended to be the same as

the Sys Req on the 84-key layout, so the 101/102-key keyboard transmits

the same scan code(54h). Similar examples are given below.

101/102-key Keyboard

Keystroke Combination

Scan Code transmitted

Alt-Sys-Req 54h

Print Screen E0h, 2Ah

Ctrl-Break E0h, 46h, E0h, C6h

Any program that processes keyboard scan codes must be aware of

which machine it’s running on and which keyboard is in use. Fortunately,

few programs need to respond directly to keyboard scan codes --- the ROM

BIOS keyboard service routines translate scan codes into meaningful

information that a program can use. The following sections describe this

translation processes more fully.

COMMUNICATING WITH THE ROM BIOS

The keyboard-controller circuitry on the computer’s system board

monitors the keyboard for input. The keyboard controller generates

interrupt 09h each time it receives a byte of data from the keyboard. The

ROM BIOS contains an interrupt 09h handler that reads the byte from the

keyboard controller and processes it. (I/O port contains the keyboard data

byte.) The interrupt 09h handler translates scan codes into 2-bytes values

that are generally more useful to a program than the original scan codes.

The low-order byte of each 2-byte keyboard value contains the ASCII

value corresponding to each key pressed. The high-order byte usually

contains the corresponding keyboard scan code.

Special keys, such as the function keys and the numeric key-pad

keys, have a 0 in the low-order byte, with the keyboard scan code in the

high-order byte.

The ROM BIOS routines place the translated byte-pairs in a queue,

which is kept in low memory in location 0040:001Eh. The byte-pairs are

stored there until they are requested by a program, such as DOS or

interpreted BASIC, that expects to read keyboard input.

TRANSLATING THE SCAN CODES

The scan-code translation job is moderately complicated because the

IBM keyboard recognizes two types of keys that change the meaning of a

keystroke: shift keys and toggle keys.

THE SHIFT KEYS

Three keys—Ctrl, Shift, Alt—are known as shift keys. They change

the shift state, and thereby meaning, of whatever key they are used with.

For example, when you press Shift-C, you get a capital C; when you press

Ctrl-C, you generate the “break” character. The ROM BIOS recognises that

all subsequent key actions will be influenced by that shift state as long as a

shift key is pressed.

THE TOGGLE KEYS

In addition to the shift keys, two toggle keys also affect the keyboard’s

shift state: the Caps Lock key and the NUM Lock key. When activated, Caps

Lock reverses the shift state of the alphabet keys; it doesn’t affect the other

keys. When activated, the NUM Lock key disables cursor-control functions

on the numeric keypad. Toggle keys are activated with a single keystroke

and remain active until released by a second keystroke.

The shift-key and toggle-key status information is kept by the ROM

BIOS in a low-memory location (0040:0017h), where you can use or change

it. When you press a shift key or a toggle key, the ROM BIOS sets a specific

bit in one of these two bytes. When the ROM BIOS receives the release scan

code of a shift key, it switches the status bit back to its original shift state.

Whenever the ROM BIOS receives a scan code for an ordinary

keystroke, such as the letter z or a right arrow key, it first checks the shift

state and then translates the key into the appropriate 2-byte code.

INTERRUPT HANDLERS

A program preparing to handle interrupts must do the following:

1. Disable interrupts, if they were previously enabled, to prevent them from

occurring while interrupts are being modified.

2. Initialise the vector for the interrupt of interest to point to the program's

interrupt handler.

3. Ensure that, if interrupts were previously disable, all other vectors point

to some valid handler routine.

4. Enable interrupts again.

The interrupt handler itself must follow some rigid sequence of steps:

1. Save the system context (registers, flags, and anything else the handler

will modify)

2. Block any interrupts that might cause interference if they were allowed

to occur during this handler's processing.

3. Enable any interrupts that should still be allowed to occur during this

handler's processing.

4. Determine the cause of the interrupt.

5. Take the appropriate action for the interrupt: receive and store data from

the serial port, set a flag to indicate the completion of a disk-sector

transfer, and so forth.

6. Restore the system context.

7. Re-enable any interrupt levels that were blocked during the handler's

execution.

8. Resume execution of the interrupted process.

SERVICING AN INTERRUPT

When the CPU senses an interrupt, it pushes the program status

word (which defines the various CPU flags), the code segment (CS) register,

and the instruction (IP) onto the machine stack and disables the interrupt

system. It then uses the 8-bit number that was jammed onto the system bus

by the interrupting device to fetch the address of the handler from the vector

table and resumes execution at that address.

Usually the handler immediately re-enables the interrupt system,

saves any registers it is going to use, and then processes the interrupt as

quickly as possible. Some external devices also require a special

acknowledgement signal so that they will know the interrupt has been

recognised. If the interrupt was funnelled through an 8259A PIC, the

handler must send a special code called end of interrupt (EOI) to the PIC

through its control port to tell it when interrupt processing is completed.

Finally, the handler executes the special IRET instruction that restores the

original state of the CPU flags, the CS register, and the instruction pointer.

Whether an interrupt was triggered by an external device or forced

by software execution of an INT instruction, there is no discernible

difference in the system state at the time the interrupt handler receives

control. This fact is convenient when you are writing and testing external

interrupt handlers because you can debug them to a large extent simply by

invoking them with software drivers.

THE INTERRUPT VECTOR TABLE

The bottom 1024 bytes of system memory are called the interrupt

vector table. Each 4-byte position in the table corresponds to an interrupt

type (0 through 0FFH) and contains the segment and offset of the interrupt

handler for that level. Interrupts 0 through 1Fh are used for internal

hardware interrupts; MS-DOS uses Interrupts 20H through 3FH; all other

interrupts are available for use by external hardware devices or system

drivers and application software.

When an 8259A PIC or other device interrupts the CPU by means of

the INTR pin, it must also place the interrupt type as an 8-bit number (0

through 0FFH) on the system bus, where the CPU can find it. The CPU

then multiplies this number by 4 to find the memory address of the

interrupt vector to be used.

INTERRUPT HANDLERS AND MS-DOS

The introduction of an interrupt handler into your program brings

with it considerable hardware dependence. Hardware dependencies in MS-

DOS applications should be avoided whenever possible, to ensure the

portability of the program.

There are valid reasons for writing our own interrupt handler for use

under MS-DOS

 To supersede the MS-DOS default handler for an internal hardware

interrupt (such as divide-by-zero)

 To supersede the MS-DOS default handler for a defined system

exception, such as the critical handler or Ctrl-C handler.

 To chain our own interrupt handler onto the default system handler.

 To service interrupts not supported by the default MS-DOS device drivers

(such as the Serial Communications port)

 To provide a path of communication between a program that terminates

and stays resident and other application software

MS-DOS provides the following facilities to enable you to install well-

behaved interrupt handlers in a manner that does not interfere with

operating-system functions or other interrupt handlers.

Function Action

Int 21H Function 25H Set Interrupt Vector

Int 21H Function 35H Get Interrupt Vector

Int 21H Function 31H Terminate and Stay resident

These functions allow you to examine or modify the contents of the

system interrupt-vector table and to reserve memory for the use of a handler

without running afoul of other processes in the system or causing memory

use conflicts.

Handlers for external hardware interrupts under MS-DOS must

operate under some fairly severe restrictions.

 Because the current versions of MS-DOS are not re-entrant, a hardware

interrupt handler should never call the MS-DOS functions during the

actual interrupt processing.

 The handler must re-enable interrupts as soon as it gets control, to avoid

crippling other devices or destroying the accuracy of the system clock.

 A program should access the 8259A PIC with great care. The program

should not access the PIC unless that program is known ot be the only

process in the system concerned with that particular interrupt level. And

it is vital that the handler issue an end-of-interrupt code to the 8259A

PIC before performing the IRET; otherwise, the processing of further

interrupts for that priority level or lower priority levels will be blocked.

The following are a few rules that should be followed when writing

an interrupt driver

 Use 21H Function 25H to modify the interrupt vector. Do not write

directly into the system Interrupt Vector Table.

 Chain back to the previous interrupt handler after performing processing

of an interrupt.

 If the program is going to stay resident, fetch and save the current

contents of the interrupt vector before modifying it and then restore the

original contents when the program exits.

 If the program is going to stay resident, use terminate-and-stay resident

functions to reserve the required amount of memory.

If hardware interrupts are processed, keep the time that interrupts

are disabled and the total length of the service routine to an absolute

minimum.

MEMORY-MAPPED DISPLAY TECHNIQUES

 Display performance is best when an application program takes over

complete control of the video adapter and the refresh buffer. Because the

display is memory-mapped, the speed at which characters can be put

on the screen is limited only by the CPU's ability to copy bytes from

one location in memory to another. Since our routine is a real time sampling

code we need to do our screen output at that maximum possible speed.

TEXT MODE:

 Direct programming of the IBM PC-compatible video adapters in

their text display modes is straightforward. The character set is the same

for all, and the cursor home position is defined to be the upper left corner of

the screen. Each character-display position is allotted 2 bytes in the regen

buffer. The first byte contains the ASCII code of the character, which is

translated by a special hardware character generator into a dot-matrix

pattern for the screen.

The second byte is the attribute byte. Several bit fields in this byte

control such features as blinking, intensity. and reverse video, depending

on the adapter type and display mode.

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Brown

7 White

8 Gray

9 Light Blue

10 Light Green

11 Light Cyan

12 Light Red

13 Light Magenta

14 Yellow

15 Intense White

The memory offset of any character on the display as the line number

(y co-ordinate) times 80 characters per line times 2 bytes per character,

plus the column number (x co-ordinate) times 2 bytes.

Offset = ((y * 50H + x) * 2) + (page * 1000H) in 80 by 25 text modes

= ((y * 50H + x) * 2) + (page * 0800H) in 40 by 25 text modes

The following code stores the character and attribute into the MDA's video

refresh buffer at the proper location:

 push ax ; save char and attribute

 mov ax,160

 mul cx ; DX:AX = Y * 160

 shl bx, 1 ; multiply x by 2

 add bx, ax ; BX = (Y * 160) + (X * 2)

 mov ax, 0b000h ; ES = segment of monochrome

 mov es, ax ; adapter refresh buffer

 pop ax ; restore char and attribute

 mov es:[bx], ax ; write them to the video buffer

 Programs that write characters directly to the CGA region buffer in

text modes must deal with an additional complicating factor -- they must

examine the video controller's status port and access the refresh buffer only

during the horizontal retrace or vertical retrace intervals. (A retrace

interval is the period when the electron beam that illuminates the screen

phosphors is being repositioned to the start of a new scan line.) Otherwise,

the contention for memory between the CPU and the video controller is

manifest as unsightly "snow" on the display. In EGA, MCGA, and VGA, we

can ignore the retrace intervals, since snow is not a problem with these

controllers.

USING THE SYSTEM TIMER TICK

In the PC/XT/AT family, the timer chip has three output channels,

each with a particular dedicated function:

 Channel 0 is the system clock-timer. When the computer is cold booted,

the ROM BIOS programs the timer oscillate with a frequency of about 18.2

ticks per second. This signal is tied to the computer's interrupt controller in

such a way that interrupt 08H is generated each time the clock ticks.

 Channel 1 is always dedicated to producing the RAM refresh timing

signal; it's not intended for use in software applications.

 Channel 2 is used to control the computer's speaker; The frequency of the

timer's channel 2 signal determines the frequency of the sound emitter by

the loudspeaker.

In all PCs and PS/2s, the interrupt oscillator to the system timer

circuit has a frequency of 1.19318 MHz. On each cycle, the timer chip

decrements the values in a set of internal 16-bit counters, one for each of

the timer's output channels. When the value in a counter reaches 0, the chip

generates a single output pulse on the corresponding channel, resets the

count, and starts counting down again.

When the ROM BIOS initialises the system timer, it stores a

countdown value of 0 in the count register for channel 0. this means that

the timer chip decrements the counter 216 times between output pulses on

channel 0, so output pulses occur 1,193,180/65,536, or about 18.2 times per

second.

The output from timer channel 0 is used as the signal on interrupt

request level 0 (IRQ0), so interrupt 08H occurs whenever channel 0 of the

system timer counts down to 0 - that is, 18.2 times per second.

The ROM BIOS contains an interrupt handler for interrupt handler for

interrupt 08H that increments a running count of clock ticks at 0040:006CH

in the BIOS data area. The ROM BIOS interrupt 08H handler also issues

software interrupt 1CH, which is intended for use in programs that want to

be notified when a system timer tick occurs. A program can detect when

each timer tick occurs simply by pointing the interrupt 1CH vector at

0000:0070H to its own interrupt handler. If you use an interrupt 1CH

handler in a program, however, be aware that the ROM BIOS interrupt 08H

handler does not allow subsequent clock-tick interrupts on IRQ0 to occur

until your interrupt 1CH handler returns.

The system timer tick and its interrupt are useful in programs that

must perform a simple task at a regular interval regardless of what else is

going on in the computer. The timer-tick interrupt has the highest priority

of any of the hardware interrupts (except the non maskable interrupt), so

the code in the corresponding interrupt 08H and 1CH handlers takes

precedence over all other system software.

SOFTWARE: HAND-HELD REMOTE KEYPAD

The Sanyo Code contains 16 bits of data. This when sampled amounts

to 32 bits of data. However, eight of these bits are lost in the stop and start

bits. Therefore, we have 24 bits or 3 bytes of data.

The total number of code combinations is 18. The received codes for

all the 18 keys are given below:

 Key

Pressed

Code Received

(in Hex)

 1 D5, DD, D7

 2 75, 77, 5D

 3 75, DD, 75

 4 D7, 57, 75

 5 5D, 77, 77

 6 5D, 5D, DD

 7 DD, DD, 75

 8 DD, D7, D5

 9 D7, 5D, 5D

 0 55, 77, D7

 Select 55, 77, 77

 Enter 57, 75, 77

 Vol. Up 77, 57, 75

 Vol. Down 77, 5D, 5D

 Ch. Up 77, 5D, 77

 Ch. Down 77, 5D, 5D

 Mute 57, D7, 77

 A/B 55, 77, 77

 P/C 55, 77, 77

 Timer 75, DD, DD

 Key

Pressed

Code Received

(in Hex)

 Delete D7, 5D, 5D

 Prog. 77, 57, D7

 Code 55, 77, D7

 Power 57, 75, DD

When a keypress is detected, the received pattern is compared with

the patterns in the already saved data set, and the corresponding key is

stuffed into the keyboard buffer. If all the three bytes are compared, in the

worst case, it would require about 70 microseconds to complete the ISR.

Other interrupts should not be disabled for this amount of time.

Hence we have used the redundancy in the 24 bits and reduced it to

8 bits, which would reduce the time consumed to a great extent.

An interesting question is why should not the data be read at the

same speed as the input signal. To avoid synchronisation problems and lost

of data.

The compression algorithm is explained below:

Message byte 1: M 1 M 1 M 1 M 1

Message byte 2: M 1 M 1 M 1 M 1

Message byte 3: M 1 M 1 M 1 M 1

 (‘M’-message bits)

All even bits in Message bytes 1 and 2 are reset.

The 2nd Message byte is rotated through right by 1 bit. Message

bytes 1 and 2 are ORed. Then the third byte is XORed with the resultant

bit.

This algorithm is tested for all code combinations of Sanyo Code, and

it preserves the uniqueness of the code.

The following comparison of different techniques to access the serial

port, clearly depicts why we decided in favour of direct access method (to

control the serial port).

MS-DOS
 Poor support for Serial port

 Slow and primitive implementation of services

ROM BIOS

 Only Polling method supported.

 No Interrupt method, to inform us of available data.

 Not Practical in Real time.

 Baud Rate support is limited (like 2000Hz is not available)

DIRECT ACCESS

Advantages

 Full Control of ports

 All Baud rates possible are supported

 Real time

 Interrupt method supported which reduces CPU overload

DownSide

 Full responsibility on the stability of the service and the system is on the

programmer

 Very tedious to implement

DEFINITIONS FOR SERIAL PORT INITIALIASING MODULE

(The port assumed here is COM1)

#define LSB_PORT 0x3f8

#define MSB_PORT 0x3f9

#define REC_PORT 0x3f8

#define INT_EN_PORT 0x3f9

#define INT_ID_PORT 0x3fa

#define LIN_CON_PORT 0x3fb

#define MOD_CON_PORT 0x3fc

#define LIN_STA_PORT 0x3fd

#define MOD_STA_PORT 0x3fe

#define SCR_PAD_PORT 0x3ff

#define PIC_MASK_PORT 0x21

#define PIC_INT_ENA 0xef

#define PIC_EOI_PORT 0x20

#define PIC_EOI_REG 0x20

#define LO_DIV 0x3A

#define HI_DIV 0x00

#define LIMIT 3

#define COM_INT_VEC 0x0c /* 0000 1100 */

#define LIN_REG 0x03 /* 0000 0011 */

#define IE_REG 0x01 /* 0000 0001 */

#define ID_REG 0x06 /* 0000 0110 */

#define MOD_CON_REG 0x0B /* OUT2 High*/

INTERRUPT SERVICE ROUTINE

 /*

 * "status" is global variable for storing line status *

 */

void interrupt New_Isr() {

/* Read the Line Status Port */

status = inp (LIN_STA_PORT);

/* Check for Data Ready signal and read it */

if (status & 0x01 == 1) Identify(inp(REC_PORT));

outp(PIC_EOI_PORT, PIC_EOI_REG); /* Send EOI to 8259 */

}

TIMER MODULE FOR CHECKING INCOMPLETE CODES

 /*

 * "c" is a global variable for count of received codes *

 */

void interrupt New_Timer() {

 /* check for incomplete pattern and reset */

 if ((c==2) || (c==3)) c=1;

 (*Old_Timer)();

}

SERIAL PORT INITIALISING MODULE

 /*

 * "temp" is a static global variable *

 * "Old_Isr" & "Old_Timer" are old isr address *

 * "New_Isr" & "New_Timer" are new isr address *

 */

void Set_Serial(){

 outp (LIN_CON_PORT,LIN_REG); /* Read the Line Register */

 /* Make Bit 7 High of Line Register*/

 outp (LIN_CON_PORT,LIN_REG | 0x80);

 outp (LSB_PORT,LO_DIV); /* Set Baud Rate for Low Divisor */

 outp (MSB_PORT,HI_DIV); /* same as above for Hi Divisor */

 outp (LIN_CON_PORT,LIN_REG); /* Reset Line Reg. to 7th Bit */

 outp(LIN_STA_PORT,0x00); /* Init the registers */

 outp(REC_PORT,0x00);

 outp (INT_EN_PORT, IE_REG); /* Set the Int. Register of 8250 */

 outp (INT_ID_PORT, ID_REG); /* Set the Int ID Reg. of 8250 */

 Old_Isr = getvect(COM_INT_VEC); /* Get the old ISR */

 setvect (COM_INT_VEC,New_Isr); /* Set our ISR for 0C/0B */

 Old_Timer = getvect(0x08) ; /* Get the old timer */

 setvect (0x08, New_Timer) ; /* Set our own TIMER ISR */

 disable(); /* disable interrupts */

 /* Get value from PIC Mask*/

 temp=(unsigned char) inp(PIC_MASK_PORT) ;

 /* Set COM1 Enable by 8259 Mask*/

 outp(PIC_MASK_PORT, temp & PIC_INT_ENA);

 /*Set the Modem Control

 outp(MOD_CON_PORT, MOD_CON_REG);

 Register of 8250 */

 enable(); /* enable interrupts */

 return;

}

 MODULE TO IDENTIFY THE KEY PRESSED

void Identify (unsigned char Value) {

 /*

 * "Buffer" is a memory array with the input key pattern *

 * "Tail" is the total no. of key codes *

 * "Codes" is a memory array with all key codes and ID's *

 * "KeyChar" is a memory array of key board scan codes *

 */

unsigned char i=0;

unsigned char CodeValue;

static int z=0;

if (Value==255) return; /* If NULL discard and return

 NO ACTION TAKEN*/

 Value |= 0x55; /* ERROR CORRECTION */

 *(Buffer+c) = Value;

 if (c == 3 { c = 1;

 CodeValue=(*(Buffer+1) & 0xAA) ^ ((*(Buffer+2) & 0xAA) >> 1) ;

 CodeValue ^= ((*(Buffer+3)) << 1) ;

 for (i=0;i<Tail;i+=2)

 if (CodeValue == *(Codes+i)) {

 /* the key pattern is stuffed into BIOS area */

 stuffkey(*(KeyChar + *(Codes+i+1)) , 0x23);

 return ;

 }

 }

else c++; /* see the next item in the pattern */

return;

}

KEYBOARD KEY STUFF MODULE

void stuffkey (char cAscii, char cScan) {

unsigned far *buffer_tail = (unsigned far *) 0x0040001C;

unsigned far *buffer_end = (unsigned far *) 0x00400082;

unsigned far *buffer_head = (unsigned far *) 0x0040001A;

unsigned far *buffer_start = (unsigned far *) 0x00400080;

char far *ascii = (char far *) 0x00400000;

char far *scancode = (char far *) 0x00400000;

ascii[*buffer_tail] = cAscii;

scancode[*buffer_tail+1] = cScan;

*buffer_tail += 2;

if (*buffer_tail >= *buffer_end) *buffer_tail = *buffer_start;

}

The keys in the remote that we mapped to desktop keyboard are as follows:

REMOTE KEYS DESKTOP KEYBOARD KEYS

1,2,3,4,5,6,7,8,9,0 1,2,3,4,5,6,7,8,9,0

SELECT SPACE BAR

ENTER ENTER/RETURN

VOLUME UP UP

VOLUME DOWN DOWN

MUTE BACKSPACE

TIMER TAB

PROG F1

POWER ESC

PROBLEMS FACED

The initial design for the KeyPad was to have a parallel RC-5 decoder

after the sensor. This approach using an IC like SAA3049 initiated us to

work in the lines of programming the Parallel port as input for six data bits.

Due to the non-availability of SAA3049 or any equivalent IC, within the

specified time limit, the parallel approach couldn’t be accomplished. This

initiated us to look into the Serial Port, which could be programmed for any

desired frequency upto 9600Hz.

Even though BIOS extends support for fixed baud rates like 1200Hz,

2400Hz, etc., there was no support for our frequency requirements. This

made us resort to direct programming of the Serial Port.

Spurious noise signals emitted by other sources such as incandescent

lamps, fluorescent lamps, were read by the system initially. These were

later filtered out. Improper keypresses generate incomplete signals which

are neglected by the system at a later stage.

APPLICATIONS
A few of the many possible applications for "Hand Held Remote KeyPad"

are outlined below:

 Numeric data entries can be effectively done without being close to

computers thus facilitating easier gathering of data.

 Inside Nuclear Research Stations where dangerous areas are enclosed by

transparent enclosures infra red can be used since electromagnetic

signals cannot be used.

 Super Markets can use the system in place of more expensive bar code

readers. Even where bar code readers are a must, the keypad can be

attached to it.

 Can be used in Restaurants for ordering the necessary items for required

quantity.

 In dedicated computer installations where the use of full fledged

keyboard is not possible/necessary, "KeyPad" can be used since it is

compact and provides adequate number of keys for these applications. A

classic example of this is a computer based Car Wheel Aligner system.

 In the Control of computer based presentations through Video Projectors,

the slides can be changed up and down even if the speaker is close to the

audience and far from the computer.

 Doctors can use it for controlling patient monitoring equipments inside

Operation Theatres.

 On the lighter side, the KeyPad can be used for playing realistic computer

games from a convenient distance.

Bibliography .

1. IBM PC/XT Technical Reference Manual

2. Motorola Linear IC manual

3. RS “Infra-Red Devices”, Data Sheet no.F18528

4. Elektor India Magazine

4.1. June 1993

4.2. November 1994

4.3. April 1995

5. OptoElectronics Circuits Manual - R.M.Martson

6. Advanced MS-DOS Programming - Ray Duncan

7. The IBM PC & PS/2 - Peter Norton

8. The Personal Computer the Inside and Out - Sargent & Shoemaker

9. Undocumented PC - Frank Van Gilluwe

10. Undocumented DOS - Andrew Schulman

11. The Waite Group’s Turbo Assembler Bible - Gary Syck

APPENDIX - A

IR SENSOR.TECHNICAL SPECIFICATIONS

The IS1U60 is an IR remote control receiver. This device is capable of a

modulated 38Khz signal and converting it into a logic pulse train output.

internal EMI shield eliminates for metal housing. It is in a compact 3 pin

package.

ABSOLUTE MAXIMUM RATINGS:

Parameter Symbol Rating Unit

Supply voltage VCC 0~6.0 V

Operating temperature Topr -10~+60 °C

Soldering temperature Tsol 260 °C

ELECTRO CHARACTERISTICS (TA=25°C, VCC =5V)

Parameter Symbol Min Typ Max Unit

Operating supply vol. VCC 4.7 - 5.3 V

Dissipation Current ICC - 2.8 4.5 mA

High level o/p vol. VOH VCC- - - V

Low level o/p vol. VOL - 0.45 0.6 V

High level pulse width T1 400 - 800 s

Low level pulse width T2 400 - 800 s

Peak Sensitivity - - 1000 - nm

B.P.F frequency range f0 36 38 41 kHz

Reception distance L 5.0 m

APPENDIX-B

PHILIPS REMOTE TRANSMITTER SPECIFICATIONS

ELECTRICAL:

Transmission/Coding
system

: Philips RC-5 (enlarged)

Wavelength : 940nm

Transmitting power : 100mW/sr or 200mW/sr

Operating distance : 20m with a receiver
sensitivity of 0.25 mW/sr

Modulation frequency : 36Khz

Batteries : AAA

Battery life : 30h on continuous
operation, 1 year on normal
operating conditions

MECHANICAL:

Size : 156 x 36 x 16 (mm)

Operating temperature : +5°C to +45°C

The Philips RC5 coding system provides upto 2048 commands

arranged in 32 addressable groups of 64 commands each. RC5 infra red

transmissions are immune to sunlight, incandescent lamps and fluorescent

tubes. Moreover the 36Khz carrier frequency used is immune from TV line-

scan interference.

APPENDIX C

PHOTOMETRIC TERMINOLOGY

This is brief introduction to the basics of photometry. Photometry

forms the underlying principles in Infra-Red devices working.

FLUX(SYMBOL F)

Any radiation, whether visible or otherwise, can be expressed by a

number of flux lines about the source, the number being proportional to the

intensity of that source. This luminous flux is expressed in LUMENS for

visible radiation.

LUMINOUS EMITTANCE (SYMBOL L)

A source measurement parameter. It is defined as the ratio of the

luminous flux emitted from a source to the area of that source, or L = F/Ae.

Typically expressed in “PHOT” or “LUX” or “FOOT CANDLE”.

ILLUMINANCE (SYMBOL E)

This is a target or detector area measurement parameter. It is the

ratio of flux lines incident on a surface to the area of that surface or E =

L/Ad. Typical Measurement units are same of Luminous Emittance.

LUMINOUS INTENSITY (SYMBOL I)

A spatial flux density concept. It is the ratio of luminous flux of a

source to the solid angle subtended by the detected area and that source.

The Luminous Intensity of a source assumes that source to be point rather

than an area dimension. The Luminous Intensity of a source is measured

in LUMENS/STERADIAN, which is equal to one “CANDELE”.

LUMINANCE (SYMBOL B)

Sometimes called photometric brightness (although the term

brightness should not be used alone as it encompasses other physiological

factors such as colour, sparkle, texture, etc.) it is applied to sources of

appreciable area size. Mathematically, if the area of an emitter (circular for

example) has a diameter or diagonal dimension greater than 0.1 the

distance to the detector, it can be considered as an area source. If less than

this 10% figure, the source can be treated as point in nature. This one to ten

ratio of source diameter to distance is offered as it mathematically very

closely approximates results obtained when comparing an area source to

its point equivalent. Luminance presents itself as an extremely useful

parameter as it applies a figure of merit to:

1. Apparent or protected area of the source (Ap).

2. Amount of luminous flux contained within the projected area of the

source.

3. Solid angle the projected area generates with respect to the centre of the

source.

CIE CURVE

Photometric quantities are related to the corresponding radiometric

quantities by the CIE standard Luminous Function which is often called

the ‘standard eyeball’. The eye responds to the rate at which radiant energy

falls on the retina, i.e., on the radiant flux density expressed as Watts/m2.

The corresponding photometric quantity is Lumens/m2. The standard

luminosity function is then, a plot of Lumens/Watt as a function of

wavelength.

DISCRETE INFRA-RED PAIRS

The miniature versions comprise a solution-grown pn junction. GaAs

infra-red emitting diode spectrally matched to a silicon passivated NPN

planar phototransistor which has exceptionally stable characteristics and

high illumination sensitivity.

The high power pair consists of high radiant intensity PN GaAs infra-

red emitting diode spectrally matched to a high photo sensitivity silicon PIN

photo diode .The high power pair is recommended for use with the remote

control IC’s.

APPENDIX-D

HOW THE 8086 USES I/O PORTS

The 8086-family microprocessors communicate with and control

many parts of the computer through the use of input and output (I/O) ports.

The I/O ports are doorways through which information passes as it travels

to or from an I/O device, such as a keyboard or a printer.

Most of the support chips are accessed through I/O ports; in fact, each

chip may use several port addresses for different purposes. Each port is

identified by a 16-bit port number, which can range from 00H through

FFFFH(65,535). The CPU identifies a particular port by the port's number.

As it does when accessing memory, the CPU uses the data and

address buses as conduits for communication with the ports. To access a

port, the CPU first send a signal on the system bus to notify all I/O devices

that the address on the bus is that of a port. The CPU then sends the port

address. The device with the matching port address responds.

The port number addresses a memory location that is associated with

an I/O device but is not part of main memory. In other words, an I/O port

number is not the same as a memory address. For example, I/O port 3D8H

has nothing to do with memory address 003D8H. To access an I/O port, you

use instructions IN and OUT, which are reserved for I//O port access.

SOME IMPORTANT I/O PORT NUMBERS:

System Timer 40H-5FH

Keyboard controller 60H-6FH

CGA 3D0H-3DFH

Serial Communications 1 3F8H-3FFH

APPENDIX E

INTERRUPTS AND THE 80x86 FAMILY:

 Interrupts are signals that cause the computer's central processing

unit to suspend what it is doing and transfer to a program called an

interrupt handler. Special hardware mechanisms that are designed for

maximum speed force the transfer. The interrupt handler determines the

cause of the interrupt, takes the appropriate action, and then returns

control to the original process that was suspended.

Interrupts are typically caused by events external to the central

processor that require immediate attention, such as the following:

 Completion of an I/O operation

 Detection of a hardware failure

 "Catastrophes"

In order to service interrupts more efficiently, most modern

processors support multiple interrupt types, or levels. Each type usually has

a reserved location in memory, called an interrupt vector; that specifies

where the interrupt-handler program for that interrupt type is located.

This design speeds up processing of an interrupt because the

computer can transfer control directly to the appropriate routine; it does not

need a central routine that wastes precious machine cycles determining the

cause of the interrupt. The concept of interrupt types also allows interrupts

to be prioritised, so that if several interrupts occur simultaneously the

important one can be processed first.

CPUs that support interrupts must also have the capability to block

interrupts while they are executing critical sections of code. Sometimes the

CPU can block interrupt levels selectively, but more frequently the effect is

global. While an interrupt is being serviced, the CPU masks all other

interrupts of the same or lower priority until the active handler has

completed its execution; similarly, it can preempt the execution of a handler

if a different interrupt with higher priority requires service. Some CPUs can

even draw a distinction between selectively masking interrupts and simply

disabling them.

The Intel 80x86 family of microprocessors support 256 levels of

prioritised interrupts, which can be triggered by three types of events.

 Internal hardware interrupts

 External hardware interrupts

 Software interrupts

INTERNAL HARDWARE INTERRUPTS

Internal Hardware interrupts, sometimes called faults, are

generated by certain events encountered during program execution, such as

attempt to divide by zero. The assignment of such events to certain

interrupt numbers is wired into the processor and is of modifiable.

Interrupt level Vector Address Interrupt Trigger

00 h 00h - 03 h Divide by zero

01 h 04h - 07 h Single step

02 h 08h - 0B h Nonmaskable Interrupt (NMI)

03 h 0Ch - 0Fh Break point

EXTERNAL HARDWARE INTERRUPTS

External hardware interrupts are triggered by peripheral device

controllers or by coprocessors. These can be tied to either the CPU's

nonmaskable interrupt (NMI) pin or its maskable interrupt (INTR) pin.

The NMI line is usually reserved for interrupts caused by such

catastrophic events as a memory parity error or a power failure.

Instead of being wired directly to the CPU, the interrupts from

external devices can be channelled through a device called the Intel 9259A

Programmable Interrupt Controller.

SOFTWARE INTERRUPTS:

Any program can trigger software interrupts synchronously simply

by executing an INT instruction. MS-DOS uses Interrupts 20H through

3FH to communicate with its modules and with application programs. The

IBM PC ROM BIOS and application software use other interrupts, with

either higher or lower numbers, for various purposes.

Interrupt Usage

20 h MS DOS terminate process

21 h MS DOS function dispatcher

22 h MS DOS terminate address

23 h MS DOS Ctrl-C handler

The text for this report was prepared using Microsoft Edit. It was processed and

formatted using Microsoft Word for 95 under Windows NT 3.51.

The Circuit diagrams were prepared using ORCAD v4.2.

The block diagrams and schematic diagrams were done using MS-Paintbrush and

VISIO 4.0 for Windows 95.

The images were scanned using Genius Scanmate/Color SE, handheld colour

scanner. The report was printed with Hewlett Packard Deskjet 520 and 660C

printers.

