Demo Script for Security Demos for India DevDays ‘2004

Demo 1: PermCalc

Objective

This demo is to show the usage of PermCalc tool that is available with VS 2005. This tool is used to determine the minimum permissions required for an assembly to execute correctly.

Setup

The following are the files required for this demo

	File Name
	Description

	PermCalc.exe
	Tool to determine the minimum security requirements

	ManagedMD.dll
	Components required for the executing PermCalc.exe

	RequiredPermissions.dll
	

	SampleApp.exe
	Sample application that has to be executed along with PermCalc.exe

	SampleApp.cs
	Source code of the sample application

There no need to do any changes in the source code.

How to execute
PermCalc SampleApp.exe

Displays the output xml in console

PermCalc –nologo SampleApp.exe > out.xml

Output redirected to an XML

Points to Explain

1. Show the source code of SampleApp.exe, where it writes to a file. The permission required for executing this application is FileIOPermission.

2. User PermCalc and pass the SampleApp.exe as argument. It generates XML containing the permissions required for execution. First time the output will be displayed in console.

3. Execute PermCalc again redirecting the output to a XML file, show the XML file in browser.

Reset instructions

1) Delete out.xml file

Demo 2: X509 Certificates

Objective

This demo is to show how the certificates can be added to certificate store and create signature files for source text files using digital certificates.

Setup

The files required for the executing this application are as follows.

	File Name
	Description

	Data.txt
	The file for which signature file has to be created

	Exportable.pfx
	The certificate file that has to be added to the certificate store.

	X509demo.cs
	Source code of the demo application

	X509demo.exe
	Demo application which will be used to add, view & remove certificates in store. Also used to sign files with certificate.

There are no additional source code changes to be done.

How to execute

Following are the different execution methods.

X509demo.exe –add Exportable.pfx
(note –add is case sensitive)

This will add the certificate file to certificate store

X509demo.exe –show

This will display a window with the list of certificates available in Certificate Store. The window displayed is automatically created one, the user need not create a windows and do the population of certificates.

X509demo.exe –sign data.txt (note that –sign is case sensitive)

This command will sign data.txt and the result will be written into signature.xml.

X509demo.exe –verify signature.xml

This is to verify the signature.xml against the data.txt source file.

Make some changes to data.txt, rerun the command

X509demo.exe –verify signature.xml
(note that –verify is case sensitive)

It should say invalid signature

X509demo.exe –remove Exportable.pfx

This command will remove the certificate from certificates store.

Point to Explain

1. AddCertificateToStore & ShowCertificates can be shown before executing the actual commands, where X509CertificateExCollection class is used for accessing the certificate store. This class is available with Whidbey Alpha version.

2. store.Certificates.Select method in ShowCertificates method is used for displaying the certificates.

3. SignDocument & VerifyDocument methods can be shown. In SignDocument uses certificates.Select method for allowing the user to select certificate with which the text file has to be signed.

4. Verification command can be executed after doing some change in data.txt, in which case it will display the result as “Invalid Signature”.

Reset instructions

1) Delete Signature.xml file

2) Run X509demo.exe –remove and remove all the certificates in store
Demo 3: Encrypt XML

Objective

This demo is to show how an XML file can be encrypted. In this demo, different tags in the xml are encrypted with different keys.

Setup

The files required for the executing this application are as follows.

	File Name
	Description

	EncryptOrder.cs
	Source code of demo application which will encrypt the tags in XML file passed.

The file is available in \FinalDemos\XmlEnc\EncryptOrder\

	EncryptOrder.exe
	Demo Application – Encrypts XML

The file is available in \FinalDemos\XmlEnc\EncryptOrder\Bin\Debug

	Order.xml
	File that has to be encrypted.

This file is available in

\FinalDemos\XmlEnc

	KeyManager.dll
	DLL file containing the Key information based on which the order.xml file will be encrypted.

The file is available in \FinalDemos\XmlEnc\EncryptOrder\Bin\Debug

	DecryptOrder.cs
	Source code of demo application which will decrypt the encrypted order.xml

The file is available in \FinalDemos\XmlEnc\DecryptOrder\

	DecryptOrder.exe
	Demo application – decrypts XML

The file is available in \FinalDemos\XmlEnc\DecryptOrder\Bin\Debug

	Billing-public.xml

Billing-private.xml
	Key file used for encrypting and decrypting the billing tag in orders.xml

	Shipping.3des
	Key file used for encrypting and decrypting the shipping tag in orders.xml

	Company.aes256
	Key file used for encrypting and decrypting company tag.

How to execute

Move to Execute folder from command line. The order of debugging commands are important, first you have to do company parameter, then shipping, then billing.

Cd Execute

EncryptOrder Order.xml

This command will encrypt the xml and save to the same order.xml. Show the encrypted order.xml file

DecryptOrder Order.xml company

This command will decrypt the company tag in encrypted order.xml. The output will be written back to order.xml

DecryptOrder Order.xml shipping

This command will decrypt the Shipping tag in encrypted order.xml. The output will be written back to order.xml, now the shipping tag is also decrypted
DecryptOrder Order.xml billing

This command will decrypt the Billing tag in encrypted order.xml. The output will be written back to order.xml, now the billing tag is also decrypted
Point to Explain

1. System.Security.Cryptography.Xml is the namespace used for encrypting XML files.

2. Encrypt method in EncryptOrder.cs, encrypts the xml element passed as parameter, using the EncryptedXML.EncryptData.

3. Decrypt method in DecryptOrder.cs, encrypts the xml element passed as parameter, using the EncryptedXML.DecryptData.

Reset instructions

1) Delete order.xml file

2) Copy order.xml from \XmlEnc\EXECUTE\xmlbackup

Demo 4: Dynamically Sandboxing the Code

Objective

This demo shows how to create dynamic sandbox for an application.

Setup

The following are the files required for this demo

	File Name
	Description

	Sandbox.cs
	Source code of the application which creates the dynamic sandbox

	Sandbox.exe
	Demo application

	PrintInConsole.exe
	Application which will run under the sandbox application. This application just displays a message in the console.

	CreateFile.exe
	This is another application which will run under the sandbox, but it will try to create a text file in the application folder.

There no need to do any changes in the source code.

How to execute

Sandbox.exe PrintInConsole.exe

PrintInConsole will be executed through sandbox and the message will be displayed in Console.

Sandbox.exe CreateFile.exe

CreateFile.exe will be executed within the sandbox, but exception will be thrown when createfile.exe tries to create file in the hard disk. Show the exception in CLR Debugger Whidbey.

Points to Explain

1. Source code of PrintInConsole & CreateFile application can be shown

2. In the source code of Sandbox.CS, the app domain is created and security policy for the domain is constructed.

3. ad.ExecuteAssembly is used to execute the exe filename that is passed as parameter to sandbox.exe. ‘ad’ represents the AppDomain object.

Reset instructions

1) No Reset instructions

Demo 5: Dynamically specifying Access Control

Objective

This demo is to show how the access control for a file can be specified in .Net code.

Setup

The following are the files required for this demo

	File Name
	Description

	CreateSecuredFile.cs
	Source code of demo which will create text file with specified access control.

	CreateSecuredFile.exe
	Demo executable file.

In the source code, line number 19, the user name for whom the rights has to changed to user name that exists in the current machine. Recompile the code and run the exe from the bin folder. In the code it is specified as “Administrator”.

How to execute

ACLDemo.exe

There are no parameters required to be passed to the Exe. The application will create a file “foo.txt” with specified access control.

Points to Explain

1. In the source code “System.Security.AccessControl” namespace is used for dynamically adding the access control for a file.

2. FileSecurity class is used for setting the access control for the created file. If access control has to be specified for directory, DirectorySecurity class can be used.

3. FileSystemAccessRule class accepts the user name and the access control that has to be given for the file.

Reset instructions

1) Delete foo.txt text file

Demo 6: DemandDemo

Objective

This demo is to show how Demand method of PrincipalPermission Works.

Setup

The following are the files required for this demo

	File Name
	Description

	DemandDemo.cs
	Source code of demo.

	DemandDemo.exe
	Demo executable file.

How to execute

DemandDemo.exe
 If the input is given as 1, the application identity is changed to generic identity “MyUser” under role “Administrator”. On execution of “PrivateInfo” method, it will demand for the “Administrator” role and user “MyUser”. When input is given other than “MyUser”, a securityexception is thrown.

Reset instructions

1) No reset instructions

Demo 7: DemandAssert

Objective

This demo is to show how the Demand and Assert of PrincipalPermission works.

Setup

The following are the files required for this demo

	File Name
	Description

	AssertDemand.cs
	Source code of demo.

	AssertDemand.exe
	Demo executable file.

How to execute

AssertDemand.exe
The executable will check for the rights of current user to read the “D:\DemoFolder” directory, if the user has privileges it will read the file creation date and will display it along with file name.

Setup

D:\DemoFolder has to be created with few dummy files.
Reset instructions

1) No reset instructions

Demo 8: AccessSecuredAssembly

Objective

This demo is to show DemandChoices like Demand, LinkDemand & InheritanceDemand.

Setup

The following are the files required for this demo (folder: MoredemandChoices)
	File Name
	Description

	SecuredAssembly.dll
	Demo Component – With Demand Choice Attributes

	SecuredAssembly.cs
	Source code of the component

	AccessSecuredAssembly.exe
	Application that access the SecuredAssembly

There no need to do any changes in the source code.

How to execute
AccessSecuredAssembly.exe

Displays the system name, OS Version, date time & currency symbol of current machine.
Points to Explain

The component has following security attributes`

[PrincipalPermissionAttribute(SecurityAction.Demand, Role = "Administrators")]

This is to ensure that the component is accessed by users who are under the Administrator Group.

[ZoneIdentityPermissionAttribute(SecurityAction.LinkDemand, Zone = SecurityZone.MyComputer)]

This is to ensure that the component is accessed by application that are running in the computer and not from network or intranet or internet.

[PermissionSetAttribute(SecurityAction.InheritanceDemand, Name = "FullTrust")]

This is to ensure that the component is inherited by other components which have “fulltrust”
Setup

1) No setup instructions

Reset instructions

1) No reset instructions

Demo 9: AccessInheritedSecuredAssembly

Objective

This demo is to show Security Access for a component inherited by another component
Setup

The following are the files required for this demo (folder: MoredemandChoices)
	File Name
	Description

	InheritedSecuredAssembly.dll
	This component is inherited from SecuredAssembly.dll

	InheritedSecuredAssembly.cs
	Source code of secured assembly.

	AccessInheritedSecuredAssembly.exe
	Application Accessing the InheritedSecuredAssembly

How to execute
AccessInheritedSecuredAssembly.exe

This will display the current language along with the information displayed by SecuredAssembly.
Copy the file to a network location like to a VPC machine and run it from a share from there. It will throw a security exception, since it doesn’t have ‘fulltrust’
Setup

1) Have a ready to use, with access write to a network share.
Reset instructions

1) No reset instructions

Demo 10: Access the Assembly from ASP.Net Page

Objective

This demo is to show accessing components from ASP.NET.
Setup

The following are the files required for this demo (folder: MoredemandChoices)
	File Name
	Description

	Secured.aspx
	Page that uses SecuredAssembly

	InheritedSecured.aspx
	Page that uses InheritedSecuredAssembly

How to execute
1. Run Secured.aspx as a normal user. You will get a security exception because Demand is for Administrator in the components attribute.

2. Run InheritedSecured.aspx as a normal user. You will get a security exception because Demand is for Administrator in the components attribute.

3. Run Secured.aspx as Administrator, it will fail because the LinkDemand is for MyComputer.
4. Run InheritedSecured.aspx as a Administrator. You will get a security exception because trustlevel is not “FullTrust”

Setup

1) Create a web folder, copy the dll from previous demos (InheritedSecuredAssembly.dll, SecuredAssembly.dll)
2) Copy the files from WebPagesAccessingTheseComponents folder.
3) Setup the security for the web folder to authenticate using Windows/NTLM Authentication
4) Have two usernames, one with admin privilege and other non-admin.
5) Run the URLs SecuredAssembly.aspx, InheritedSecured.aspx from your web server once.
Reset instructions

1) No reset instructions

For queries, contact venkat@vishwak.com

12

